LeetCode
  • Introduction
  • Design
    • 348. Design Tic-Tac-Toe
    • 534. Design TinyURL
    • 535. Encode and Decode TinyURL
    • 346. Moving Average from Data Stream
    • 281. Zigzag Iterator
    • 381. Insert Delete GetRandom O(1) - Duplicates allowed
    • 432. All O`one Data Structure
    • 341. Flatten Nested List Iterator
    • 642. Design Search Autocomplete System
    • 170. Two Sum III - Data structure design
    • 622. Design Circular Queue
    • 295. Find Median from Data Stream
  • OOD
    • 146.LRU Cache(Amazon)
  • Sort
    • Bucket Sort
      • 791. Custom Sort String
      • 347. Top K Frequent Elements
      • 1057. Campus bikes
    • 280. Wiggle Sort
    • 75. Sort Colors
  • Binary Search
    • 278. First Bad Version
    • 162. Find Peak Element in O(logn)
    • LintCode 183. Wood Cut
    • 33. Search in Rotated Sorted Array
    • 81. Search in Rotated Sorted Array II
    • 153. Find Minimum in Rotated Sorted Array
    • 154. Find Minimum in Rotated Sorted Array II
    • 34. Find First and Last Position of Element in Sorted Array
    • Count number of occurrences (or frequency) in a sorted array
    • 378. Kth Smallest Element in a Sorted Matrix
    • 240. Search a 2D Matrix II
    • 658. Find K Closest Elements
    • 410. Split Array Largest Sum
  • Data Structure
    • Arrays
      • Two Pointer
        • 11. Container With Most Water
      • 283. Move Zeros
      • 26. Remove Duplicates from Sorted Array
      • 88. Merge Sorted Array
      • 683. K Empty Slots
      • 4. Median of Two Sorted Arrays
      • Interval
        • 56. Merge Interval
        • 57. Insert Interval
      • 54. Spiral Matrix
      • 48. Rotate Image(Amazon, MicroSoft, Apple)
      • 448. Find All Numbers Disappeared in an Array
      • 228. Summary Ranges
      • 289. Game of Life
      • 298. Product of Array Except Self
      • 825. Friends of Appropriate Ages
    • Stack
      • Postfix to Infix
      • 155. Min Stack
      • 716. Max Stack
      • 388. Longest Absolute File Path
      • 316. Remove Duplicate Letters
      • 636. Exclusive Time of Functions
      • Calculator Series
        • 227. Basic Calculator
        • 772. Basic Calculator III
    • Trie
      • 208. Implement Trie (Prefix Tree)
      • 211. Add and Search Word - Data structure design
      • 336. Palindrome Pairs
      • 212. Word Search II
    • Heap
      • 218. The Skyline Problem
      • 23. Merge k Sorted Lists
      • 252. Meeting Rooms
      • 253. Meeting Rooms II
      • 215. Kth Largest Element in an Array
      • 692. Top K Frequent Words
      • 373. Find K Pairs with Smallest Sums
    • Deque
      • 239. Sliding Window Maximum
    • Map
      • 128. Longest Consecutive Sequence
      • 350. Intersection of Two Arrays II
      • 760. Find Anagram Mappings
    • Segment Tree / Binary Indexed Tree
      • 308. Range Sum Query 2D - Mutable
      • 218. The Skyline Problem
      • 315. Count of Smaller Numbers After Self
      • 308. Range Sum Query 2D - Mutable
      • 493. Reverse Pairs
    • Linked List
      • 19. Remove Nth Node From End of List
      • 24. Swap Nodes in Pairs
      • 160. Intersection of Two Linked Lists
      • 138. Copy List with Random Pointer
      • 143. Reorder List
      • 445. Add Two Numbers II
    • Tree
      • BST
        • 109. Convert Sorted List to Binary Search Tree
        • 285. Inorder Successor in BST
        • Convert Binary Search Tree (BST) to Sorted Doubly-Linked List
        • Construct Binary Tree from Inorder and Postorder Traversal
      • 101. Symmetric Tree
      • 105. Construct Binary Tree from Preorder and Inorder Traversal
      • 106. Construct Binary Tree from Inorder and Postorder Traversal
      • 110. Balanced Binary Tree
      • 129. Sum Root to Leaf Numbers
      • 199. Binary Tree Right Side View
      • 257. Binary Tree Paths
      • 543. Diameter of Binary Tree
      • Sum Root to Leaf Numbers
    • Hash Table
      • 325. Maximum Size Subarray Sum Equals k
      • 314. Binary Tree Vertical Order Traversal
    • Union-Find
      • 721. Accounts Merge
      • 305. Number of Islands II
      • 323. Number of Connected Components in an Undirected Graph
      • 261. Graph Valid Tree
      • 947. Most Stones Removed with Same Row or Column
    • Linked List
      • 138. Copy List with Random Pointer
      • 21. Merge Two Sorted Lists
      • 23. Merge K Sorted Lists
      • 206. Reverse Linked List
      • 237. Delete Node in a Linked List
      • 141. Linked List Cycle
      • 142. Linked List Cycle II
      • 148. Sort List
      • 708. Insert into a Cyclic Sorted List
  • Graph
    • BFS/DFS
      • Topological Sort
        • 207. Course Schedule
        • 210. Course Schedule II
        • 133. Clone Graph
        • 675. Cut Off Trees for Golf Event
        • 269. Alien Dictionary
      • BackTracking
        • 39. Combination Sum
        • 40. Combination Sum II
        • 79. Word Search
        • 212. Word Search II
        • 282. Expression Add Operators
      • Memoization
        • 329. Longest Increasing Path in a Matrix
      • 733. Flood Fill
      • 279. Perfect Squares
      • 200. Number of Islands (Amazon)
      • 694. Number of Distinct Islands
      • 711. Number of Distinct Islands II
      • 98. Validate Binary Search Tree
      • 785. Is Graph Bipartite?
      • 491. Increasing Subsequences
      • 51. N-Queens
      • 52. N-Queens II
      • 286. Walls and Gates
      • 111. Minimum Depth of Binary Tree
      • 753. Craking the Safe
    • 399. Evaluate Division
    • 127. Word Ladder
    • 126. Word Ladder II
    • 339. Nested List Weight Sum
  • Traversal
    • 297. Serialize and Deserialize Binary Tree
    • 236. Lowest Common Ancestor of a Binary Tree
    • 235. Lowest Common Ancestor of a Binary Search Tree
    • 144. Binary Tree Preorder Traversal
    • 255. Verify Preorder Sequence in Binary Search Tree
    • 94. Binary Tree Inorder Traversal
    • 145. Binary Tree Post Order Traversal
    • 102. Level Order Traversal
    • 103. Binary Tree Zipzag Level Order Traversal
    • 107. Binary Tree Level Order Traversal
    • 156. Binary Upside Down
    • 173. Binary Search Tree Iterator
    • 99. Recover Binary Search Tree
    • Morris Traversal
    • 498. Diagonal Traverse
    • Flatten
      • Flatten Binary Tree to Linked List
  • Math
    • Bit Manipulation
      • 231. Power of Two
      • 393. UTF-8 Validation
      • 371. Sum of Two Integers
    • 463. Island Perimeter
    • 50. Pow(x,n)
    • 326. Power of Three
    • 67. Add Binary
    • 29. Divide Two Integers
    • 360. Sort Transformed Array
    • 247. Strobogrammatic Number II
    • 277. Find the Celebrity
    • 246. Strobogrammatic Number
    • 415. Add Strings
    • 398. Reservoir Sampling
    • 43. Multiply Strings
    • 311. Sparse Matrix Multiplication
    • 8. String to Integer (Atoi)
    • 7. Reverse Integer
    • 829. Consecutive Numbers Sum
    • MiniMax
      • Guess the Word
  • Sum
    • 1. Two Sum
    • 167. Two Sum II - Input array is sorted
    • 15. 3Sum
    • 16. 3Sum Closest
    • 18. 4Sum
    • 454. 4Sum II
    • Path sum
      • 124. Binary Tree Maximum Path Sum
      • 113. Path Sum II
      • 437. Path Sum III
    • 209. Minimum Size Subarray Sum
    • 862. Shortest Subarray with Sum at Least K
    • 560. Subarray Sum Equals K
    • 523. Continuous Subarray Sum
  • Parentheses
    • 20. Valid Parentheses
    • 32. Longest Valid Parentheses
    • 301. Remvoe Invalid Parenthesis
    • 678. Valid Parenthesis String
  • String
    • Substring Search
      • 3. Longest Substring Without Repeating Characters
      • 438. Find All Anagrams in a String
      • 76. Minimum Window Substring
      • 30. Substring with Concatenation of All Words
      • 159. Longest Substring with At Most Two Distinct Characters
      • 340. Longest Substring with At Most K Distinct Characters
      • 395. Longest Substring with At Least K Repeating Characters
    • 12. Integer to Roman
    • 13. Roman to Integer
    • 44. Wildcard Matching
    • 242. Valid Anagram
    • 49. Group Anagrams
    • 657. Judge Route Circle
    • 482. License Key Formatting
    • 681. Next Closet Time
    • 387. First Unique Character in a String
    • 426. Convert Binary Search Tree to Sorted Doubly Linked List
    • 273. Integer to English Words
    • 157. Read N Characters Given Read4
    • 158. Read N Characters Given Read4 II - Call multiple times
    • 480. Valid Word Abbreviation
    • 409. Longest Palindrome
    • 680. Valid Palindrome II
    • 125. Valid Palindrome
    • 468. Validate IP Address
    • 161. One Edit Distance
    • 38. Count and Say
    • 1096. Brace Expansion II
  • Greedy
    • 630. Course Schedule III
    • 621. Task Scheduler
    • 358. Rearrange String k Distance Apart
    • 406. Queue Reconstruction by Height
    • 316. Remove Duplicate Letters
    • 767. Reorganize String
  • Dynamic Programming
    • Palindromic Substring
      • 5. longest Palindromic Substring
    • Subarray
      • 53. Maximum Subarray
      • 152. Maximum Product Subarray
    • Backpack problem
      • Backpack I
      • Backpack II
      • Backpack III
      • Backpack IV
      • Backpack V
      • Backpack VI aka: Combination Sum IV
      • Coin Change 2
    • 70. Climbing Stairs
    • 10. Regular Expression Matching
    • 91. Decode Ways
    • 338. Counting Bits
    • 121. Best Time to Buy and Sell Stock
    • 122. Best Time to Buy and Sell Stock II
    • 123. Best Time to Buy and Sell Stock III
    • 139. Word Break
    • 140. Word Break II
    • 198. House Robber
    • 72. Edit Distance
    • 221. Maximal Square
    • 84. Largest Rectangle in Histogram
    • 312. Burst Balloons
    • 304. Range Sum Query 2D - Immutable
    • 518. Coin Change 2
    • Longest Arithmetic Progression
    • 975. Odd Even Jump
    • 1066. Campus Bikes II
  • JingChi.ai
    • Word Composition
    • Sliding Window Median
    • 537. Erect the Fence (Convex Hull Problem)
    • LintCode 558: Sliding Window Matrix Maximum
    • orienteering game
    • 扫雷
  • Twitter
    • Identifying Triangle
    • Last and Second-Last
    • 300. Longest increasing subsequence
    • Twin String
    • 647. Number of palindromic substring
    • Wildcard Matching
  • Akuna
    • C++ Intern
    • V1
    • V2
    • Cut the Sticks
    • Quant Dev
    • Postfix_to_infix
    • Drone Delivery
    • phone
  • LintCode Contest
    • Ask For Cooling Time
  • SQL
    • 176. Second Highest Salary
    • 597. Friend Requests I: Overall Acceptance Rate
  • FB 19
    • Convert Binary Search Tree (BST) to Sorted Doubly-Linked List
    • 3Sum
    • Minimum Window Substring
    • Count number of occurrences (or frequency) in a sorted array
    • Count NO2
    • Valid Palindrome
    • Merge k Sorted Lists
    • Kth Largest Element in an Array
    • Move Zeros
    • Remove Invalid Parenthesis
    • friends
    • Integer to English
    • Islands
    • Valid Palindrome
    • sec
      • Longest Increasing Path in a Matrix
      • Product of Array Except Self
      • Binary Tree Vertical Order Traversal
      • Add Binary
      • Valid Parentheses
      • sup
        • 128. Longest Consecutive Sequence
        • Combination Sum II
        • Add and Search Word - Data structure design
        • feb
  • Google 20
    • 410. Split Array Largest Sum
  • 818. Race Card
Powered by GitBook
On this page

Was this helpful?

  1. Dynamic Programming

975. Odd Even Jump

You are given an integer arrayA. From some starting index, you can make a series of jumps. The (1st, 3rd, 5th, ...) jumps in the series are calledodd numbered jumps, and the (2nd, 4th, 6th, ...) jumps in the series are calledeven numbered jumps.

You may from indexi jump forward to indexj (withi < j) in the following way:

  • During odd numbered jumps (ie. jumps 1, 3, 5, ...), you jump to the index j such that A[i] <= A[j]and A[j]is the smallest possible value. If there are multiple such indexes j, you can only jump to the smallest such index j.

  • During even numbered jumps (ie. jumps 2, 4, 6, ...), you jump to the index j such that A[i] >= A[j]and A[j]is the largest possible value. If there are multiple such indexes j, you can only jump to the smallest such index j.

  • (It may be the case that for some index i,there are no legal jumps.)

A starting index is_good_if, starting from that index, you can reach the end of the array (indexA.length - 1) by jumping some number of times (possibly 0 or more than once.)

Return the number of good starting indexes.

Example 1:

Input: 
[10,13,12,14,15]
Output: 
2
Explanation: 

From starting index i = 0, we can jump to i = 2 (since A[2] is the smallest among A[1], A[2], A[3], A[4] that is greater or equal to A[0]), then we can't jump any more.
From starting index i = 1 and i = 2, we can jump to i = 3, then we can't jump any more.
From starting index i = 3, we can jump to i = 4, so we've reached the end.
From starting index i = 4, we've reached the end already.
In total, there are 2 different starting indexes (i = 3, i = 4) where we can reach the end with some number of jumps.

Example 2:

Input: 
[2,3,1,1,4]
Output: 
3
Explanation: 

From starting index i = 0, we make jumps to i = 1, i = 2, i = 3:

During our 1st jump (odd numbered), we first jump to i = 1 because A[1] is the smallest value in (A[1], A[2], A[3], A[4]) that is greater than or equal to A[0].

During our 2nd jump (even numbered), we jump from i = 1 to i = 2 because A[2] is the largest value in (A[2], A[3], A[4]) that is less than or equal to A[1].  A[3] is also the largest value, but 2 is a smaller index, so we can only jump to i = 2 and not i = 3.

During our 3rd jump (odd numbered), we jump from i = 2 to i = 3 because A[3] is the smallest value in (A[3], A[4]) that is greater than or equal to A[2].

We can't jump from i = 3 to i = 4, so the starting index i = 0 is not good.

In a similar manner, we can deduce that:
From starting index i = 1, we jump to i = 4, so we reach the end.
From starting index i = 2, we jump to i = 3, and then we can't jump anymore.
From starting index i = 3, we jump to i = 4, so we reach the end.
From starting index i = 4, we are already at the end.
In total, there are 3 different starting indexes (i = 1, i = 3, i = 4) where we can reach the end with some number of jumps.

Example 3:

Input: 
[5,1,3,4,2]
Output: 
3
Explanation: 

We can reach the end from starting indexes 1, 2, and 4.

Note:

  1. 1 <= A.length <= 20000

  2. 0 <= A[i] < 100000

Thoughts:

  1. DP: dp[i][0]: even jump at i; dp[i][1]: odd jump at i T:O(n^2)

  2. Sort + Stack to eliminate double for loop: keep stack monotonic decreasing as frogs jump to index monotonic increasing.

Code DP:

class Solution(object):
    def oddEvenJumps(self, A):
        """
        :type A: List[int]
        :rtype: int
        """
        n = len(A)
        odd = [-1] * n
        even = [-1] * n

        dp = [[0,0] for _ in range(n)] 
        dp[-1] = [1, 1]
        for i in range(n - 2, -1, -1):
            max_val, max_idx, min_val, min_idx = min(A[i + 1:]) - 1, -1, max(A[i + 1:]) + 1, -1
            for j in range(i + 1, n):
                if A[i] >= A[j] and A[j] > max_val:
                    max_idx = j 
                    max_val = A[j]
                if A[i] <= A[j] and A[j] < min_val:
                    min_idx = j
                    min_val = A[j]
            odd[i] = min_idx
            even[i] = max_idx

        ans = 1
        for k in range(n - 2, -1, -1):
            if even[k] != -1: 
                dp[k][0] = dp[even[k]][1] # even -> odd 
            if odd[k] != -1:
                dp[k][1] = dp[odd[k]][0] # odd -> even
            ans += dp[k][1]

        return ans

Code DP with stack optimization: T: O(nlogn)

class Solution:
    def oddEvenJumps(self, A: List[int]) -> int:
        n = len(A)
        # odd/even[i] -- start at i, next jump is odd/even
        odd, even = [False] * n, [False] * n
        odd[-1], even[-1] = True, True

        # sort by value then by index
        Asort = sorted([(x, i) for i, x in enumerate(A)])
        Asort_rev = sorted([(-x, i) for i, x in enumerate(A)])

        # find the jump-to location of each index
        oddjump = self.findjump(Asort)
        evenjump = self.findjump(Asort_rev)

        n_good = 1
        # try all starting locations, both odd and even
        # make one jump, use the solution of the jump-to location
        for i in range(n-2, -1, -1):  # n-1,n-2...1,0
            j = oddjump[i]
            if j is not None:
                odd[i] = even[j]
            # if j is None, then no legal jump

            j = evenjump[i]
            if j is not None:
                even[i] = odd[j]

            if odd[i]:
                n_good += 1
        return n_good

    def findjump(self, Asort):
        # monotonic stack
        stack = []
        # the jump-to index of each index
        jumpto = [None] * len(Asort)

        for _, i in Asort:
            # pop the indexes smaller than current
            # point th jump-to of these indexes to current
            while stack and stack[-1] < i:
                jumpto[stack.pop()] = i
            # push into stack
            stack.append(i)

        return jumpto
PreviousLongest Arithmetic ProgressionNext1066. Campus Bikes II

Last updated 5 years ago

Was this helpful?