711. Number of Distinct Islands II
Given a non-empty 2D arraygrid
of 0's and 1's, an island is a group of1
's (representing land) connected 4-directionally (horizontal or vertical.) You may assume all four edges of the grid are surrounded by water.
Count the number of distinct islands. An island is considered to be the same as another if they have the same shape, or have the same shape after rotation(90, 180, or 270 degrees only) or reflection(left/right direction or up/down direction).
Example 1:
11000
10000
00001
00011
Given the above grid map, return 1
.
Notice that:
11
1
and
1
11
are considered same island shapes. Because if we make a 180 degrees clockwise rotation on the first island, then two islands will have the same shapes.
Example 2:
11100
10001
01001
01110
Given the above grid map, return 2
.
Here are the two distinct islands:
111
1
and
1
1
Notice that:
111
1
and
1
111
are considered the same island shapes. Because if we flip the first array in the up/down direction, then they have the same shapes.
Note:The length of each dimension in the givengrid
does not exceed 50.
Thoughts:
DFS + sorting: first use DFS to group all the islands, and then for "normalize" each group by listing all the possible
cases of index presentation of a island and pick the canonical one.
Code
class Solution {
// typedef pair<int,int> point; old fashion :(
using point = pair<int,int>; // new fashion :)
using points = vector<point>;
map<int, points> m;
public:
int numDistinctIslands2(vector<vector<int>>& grid) {
set <points> distinct;
if(grid.size()==0) return distinct.size();
// step1: find island
int count = 1;
for(int i = 0; i < grid.size(); i++)
for(int j =0; j < grid[i].size(); j++)if(grid[i][j] == 1){
dfs(i,j,grid,++count);
distinct.insert(norm(m[count]));
}
return distinct.size();
}
void dfs(int r, int c, vector<vector<int>>&grid, int cnt){
if (r < 0 || r >= grid.size() || c < 0 || c >= grid[0].size()) return;
if(grid[r][c] != 1) return; // must be 1 since other number means "unpassable"
grid[r][c] = cnt; // "infection" , "propogation"
m[cnt].emplace_back(r,c);// record
dfs(r + 1, c , grid, cnt); //down
dfs(r - 1, c , grid, cnt); //up
dfs(r , c + 1 , grid, cnt); //right
dfs(r , c - 1, grid, cnt); //left
}
points norm(points v){
// expand all the possibilities of a norm
vector<points> spand(8);
for(auto p: v){
int x = p.first, y = p.second;
// 8 cases
spand[0].emplace_back(x , y);
spand[1].emplace_back(x , -y); // reflextion by vertical
spand[2].emplace_back(-x , y); // reflextion by horizontal
spand[3].emplace_back(-x , -y); // reflextion by (0,0)
spand[4].emplace_back(y , -x); // rotation by 90 clockwise
spand[5].emplace_back(-y , x); // rotation by 90 counter-clockwise
spand[6].emplace_back(-y , -x); // rotation by 90 counter-clockwise + reflectin by vertical
// or rotation by 90 clockwise + reflection by horizontal
spand[7].emplace_back(y , x); // rotation by 90 clockwise + refletion by vertical
// rotation by 90 counter-clockwise + reflection by horizontal
}
for(auto &l: spand) sort(l.begin(), l.end());
// normalization: fix the offset as (0,0)
for (auto &l:spand) {
for (int i = 1; i < v.size(); ++i)
l[i] = {l[i].first-l[0].first, l[i].second - l[0].second};
l[0] = {0,0};
}
// finally sort the spand to get the canical representation
sort(spand.begin(), spand.end());
return spand[0];
}
};
Last updated
Was this helpful?